

Enriching Open-world Knowledge Graphs with Salient Negative Statements

Hiba Arnaout

Knowledge Graphs (KGs)

Die Hard cast members

Traditional search

Die Hard (1988) - IMDb

https://www.imdb.com/title/tt0095016 -

Web 20 Jul 1988 Die Hard: Directed by John McTiernan. With Bruce Willis, Bonnie Bedelia, Reginald VelJohnson, Paul Gleason, A New York City police officer tries to save his ...

Die Hard - Full Cast & Crew - TV Guide

https://www.tvguide.com/movies/die-hard/cast/2030360926 -

Web Alan Rickman Hans Gruber Reginald VelJohnson Sgt. Al Powell Bonnie Bedelia Holly McClane Alexander Godunov Karl Hart Bochner Harry Ellis Paul Gleason Dwayne ...

Director: John Mctiernan Content Rating: R

Die Hard Cast List: Actors and Actresses from Die Hard - Ranker

https://www.ranker.com/list/hard-cast-and-actors-in-this-movie/reference -

Web The cast members of Die Hard have been in many other movies, so use this list as a starting point to find actors or actresses that you may not be familiar with. Items on this ...

Die Hard (film series) - Wikipedia

https://en.wikipedia.org/wiki/Die Hard (film series) -

Web Die Hard is an American action film series that originated with Roderick Thorp's 1979 novel Nothing Lasts Forever. All five films revolve around the main character of John McClane ,

The Die Hard Actors You May Not Know Passed Away - Looper

https://www.looper.com/732090/the-die-hard-actors-you-may-not-know... . Web 12 Jan 2022 . The Die Hard Actors You May Not Know Passed Away Paul Gleason, Apart

With KGs

Die Hard

FSK 16 1988 - Action/Thriller - 2h 12m

B QI

Overview

Watch n

Cast

Bruce Willis John McClane

Alan Rickman Hans Gruber

Bonnie Bedelia

Reginald Holly Gennaro M. VelJohnson

William Atherton Richard Thornburg

About

IMDb

Die Hard | 30th Anniversary Trailer | 20th C ... 1:22 94 % 72 % $(\hat{\mathbf{0}})$ Rotten Toma... Metacritic

89% liked this film () Google users

Hoping to spend Christmas with his estranged wife, detective John McClane arrives in LA. However, he learns about a hostage situation in an office building and his wife is one of the hostages.

Release date: July 22, 1988 (USA) Director: John McTiernan Sequel: Die Hard 2 Distributed by: 20th Century Studios Adapted from: Nothing Lasts Forever Budget: \$25-35 million

Types of KGs

(Subject, Predicate, Object) triples:

Encyclopedic

Wikidata, DBpedia, YAGO

-- real-world entities

(Angela Merkel, birthPlace, Hamburg) (L3S, location, Lower Saxony)

• Commonsense

ConceptNet, WebChild, COMET -- everyday concepts

• Other

KnowLife, Amazon Product Graph -- Domain-specific or corporate projects

Knowledge Gap

Web-scale KGs are incomplete.

-> They **DON'T** take a stance on **absent** information

KG (Bruce Willis, award, Emmy)

Querying KG		Closed-world Assumption (CWA)		Open-world Assumption (OWA)
Willis,	award,	Emmy)?	Yes	Yes
Willis,	award,	Oscar)?	No	Unknown

Knowledge Gap - Example

Querying positive information

🖣 Bruce Willis Emmy 🛛 🎍 🧕

Bruce Willis / Primetime Emmy Awards / Awards

Lead Actor - Drama Series 1987

Lead Actor - Drama Series 1986

Querying absent (negative) information

Bruce Willis Oscar 🤳 💿

Bruce Willis - Awards - IMDb

https://www.imdb.com/name/nm0000246/awards -

Übersicht	Biografie
-----------	-----------

Filmografie (Auswahl)

Deutsche Synchrons >

Walter Bruce Willis (* 19. Marz 1955 in Idar-Oberstein, Deutschland) ist ein ehemaliger US-amerikanischer Schauspieler. Seinen Durchbruch als Filmschauspieler hatte er 1988 mit dem Kinofilm Stirb langsam in der Rolle des John McClane, die er auch in mehreren Fortsetzungen verkörperte. Zuvor war er bereits durch die Fernsehserie Das Model und der Schnuffler bekannt...

Wikipedia - Text under CC-BY-SA licence

List of awards and nominations received by Bruce Willis

https://en.wikipedia.org/wiki/List_of_awards_and_nominations_received... -

Web 16 rows · Bruce Willis awards' list Willis in 2018. The following is a List of awards and ...

YEAR	CATEGORY	NOMINATED WORK	RESULT
2022	Worst Bruce Willis Performance in a 2021	Survive the Game	Rescinded
2022	Worst Bruce Willis Performance in a 2021	Out of Death	Rescinded
2022	Worst Bruce Willis Performance in a 2021	Midnight in the Switchgrass	Rescinded
2022	Worst Bruce Willis Performance in a 2021	Fortress	Rescinded
See all	16 rows on en wikipedia.org		

Solution: CWA Baseline ?

Awards of Bruce Willis in Wikidata: 7 awards -> negating 36K awards

Overall: negating 150B statements

False negatives ~ 6%
NOT(Willis, award, Golden Globe)

True negatives ~ 87% (trivial)

NOT(Willis, award, honorary citizen of Bonn)

True negatives ~ 7% (salient)

NOT(Willis, award, Oscar)

Challenges

1) Identify candidate salient negatives about entities

thematic, interesting, unexpected

2) Scrutinize candidates

truly negative rather than missing positive

many NBA players become coaches after they retire

This Talk

- Negation Inference from Encyclopedic KGs [AKBC20, JWS21]
- Negation Inference from Commonsense KGs [CIKM22]
- \circ Use cases
 - Knowledge Exploration [VLDB21]
 - Demographic Analyses [ICWSM23]
- Can LLMs solve this problem?
- Take Away

Negation Inference from Encyclopedic KGs

We propose the peer-based negation inference method

- -Given entity e in KG:
 - 1. Select highly related entities (peers)
 - 2. Postulate local CWA (within peer group)
 - 3. Infer <u>expectations</u> about <u>e</u> (*candidate* negatives)
 - 4. Score candidates by relative frequency
 - Output: salient negatives about e.

Highly Related Entities (Peers)

Identify similar entities to e = Wilhelm Busch

1. Class-based similarity:

using KG's type system Professions of Busch? -> Illustrator, .. Other illustrators: *Bettina von Arnim, Karel Appel, ..*

2. Graph-based similarity:

counting shared predicate-object pairs Busch AND Thomas Mann = 3% in common Both worked in Munich, speak German, ..

3. Embedding-based similarity:

using pre-trained embeddings SIM(vec(Busch), vec(Adolf Oberländer)) = 0.93

[A, Razniewski, Weikum AKBC20] Best Paper Award (conference attendees vote)¹⁰

Postulate Local CWA

Local CWA = assume *completeness* over selected parts of the KG, i.e., **peer-related** subgraph (*embedding-based*)

[A, Razniewski, Weikum AKBC20] Best Paper Award (conference attendees vote)¹¹

Infer and Score Negatives

- 1) Infer absent links as negative
- 2) Compute salience as relative frequency

Main Evaluation Findings: Peer-based Inference

Assessments using crowdsourcing tasks (mturk.com)

- In biographic summaries about entities: best negatives-to-positives ratio 1:3
- Our method *outperforms* in **nDCG3** (rank by **salience**)
 CW baseline by **24%**; KGE methods by **17%**
- 3) Boost in correctness by 30% by enforcing the Partial Completeness Assumption (PCA) Infer NOT(s, p, o) for s iff (s, p, o') ∈ KG Downside: losing the ability to infer empty-object negatives, e.g., (child, none)

Limitation 1: Basic Peer Groups Construction

- a) Multiple, unordered, labeled groups Class-based: Novelists: Saddam Hussein, ..
- b) Single, ordered, unlabeled group Embeddings-based similarity: Philip Pullman, ...

Goal - <u>Multiple</u> ordered labeled peer groups.

We propose the order-oriented version of the method.

[A, Razniewski, Weikum, Pan JWS21]

Order-oriented Peer-based Negation Inference

- New peering: (s, p, o, additional qualifier) member group member's order in the group label
- (J. K. Rowling, recipient, Locus for Best Novel, 2000)

Order-oriented Peer-based Negation Inference

- New peering: (s, p, o, additional qualifier) member group member's order in the group label
- (J. K. Rowling, recipient, Locus for Best Novel, 2000)

Order Reflected in Salience Computation

Recipients of Locus for Best Novel Award

Score(
$$t$$
) $\stackrel{\text{def}}{=} \operatorname{argmax}_{S[:m]} \left[\alpha \quad \frac{\operatorname{FRQ}(t, S)}{\operatorname{VOL}(S)} + (1 - \alpha) \log \operatorname{FRQ}(t, S) \right]$

fraction of peers with <u>t</u> in S[:m] reward larger number of peers

 $\alpha = 0.5$

Sample Results for J. K. Rowling on Full KG (Wikidata)

NOT male (but female), unlike 49 of the previous 68
 fellows of the Royal Society of Edinburgh

Main Evaluation Findings: Ordered Peers

Assessments using crowdsourcing* tasks (mturk.com)

Performance of *order-oriented* against original *peer-based inference*:

10% in Correctness* and Salience*

-46% in Entity Coverage (due to qualifier requirement!)

Limitation 2: Beyond Simple Negatives

grounded negatives

universally negative

We propose a new type of negative statements: conditional negatives

Generating Conditional Negative Statements

• By lifting grounded negatives, using <u>common</u> aspects, e.g., type, location, ..., of object nodes

This Talk

- Negation Inference from Encyclopedic KGs [AKBC20, JWS21]
- Negation Inference from Commonsense KGs [CIKM22]
- Use cases
 - Knowledge Exploration [VLDB21]
 - Demographic Analyses [ICWSM23]
- Can LLMs solve this problem?
- o Take Away

Peer-based for Commonsense KGs (CSKGs)?

New challenges:

1. Loosely canonicalized

- Inference/ranking using exact match isn't sufficient
- 2. PCA for correctness
 - Isn't sufficient due to lack of expressive predicates

Loosely Canonicalized CSKGs

We propose <u>soft</u> instead of hard <u>match</u>: We compare sentence embeddings to capture similarity between phrases

 Phrase1=Phrase2 iff SIM (Phrase1, Phrase2) > α where α a tunable hyperparameter

[A, Razniewski, Weikum, Pan CIKM22] [Reimers, Gurevych EMNLP19]

PCA as Correctness Signal?

Recap: Partial Completeness Assumption (PCA) Infer NOT(s, p, o) for s iff (s, p, o') \in KG

Issue: CSKGs lack expressive predicates

- 10812 in Wikidata – encyclopedic

Child

- 19 in ConceptNet – commonsense

HasProperty

We propose using <u>an external source of knowledge</u> to scrutinize candidates: Probing pre-trained LM to find contradictions

External Correctness Signal

Find <u>contradiction</u> to candidates using external source of knowledge

Using **BERT**:

[MASK] have tusks.
-> elephants at rank k #6
-> drop candidate

[MASK] eat grass. -> elephants at rank #53 -> drop candidate

k should be <= *c*; a tunable hyperparameter

1. CW-baseline: absent links as negative NOT(elephant, MadeOf, wheat)

Main limitation

Salience

 Text-based: Mining query logs why can't elephants.. → run

Correctness

- 3. NegatER: Graph-based corruptions + rank using fine-tuned LM NOT(horse rider, IsA, pet) horse changed to horse rider
- Salience (Type-inconsistency)

 4. LM-based: Prompt GPT-3 (zero-shot setting)
 elephants don't have.. → tails

[Kassner, Schütze ACL20] [Safavi, Zhu, Koutra EMLP21] [Romero, Razniewski, Pal, Pan, Sakhadeo, Weikum CIKM19] Correctness

Main Evaluation Findings: Negatives from CSKGs

Assessments using crowdsourcing* tasks (mturk.com)

- CW last in Salience*, NegatER second-to-last
- GPT-3 comparable to text-based:
 +/- 2% on all metrics

Our model outperforms GPT-3 in:	Model	Top negation (elephant)	
Salience*	CW	NOT(is a doctor)	
Recall	GPT-3	(not found in the wild)	
Groundtruth: ConceptNet's negatives	Ours	NOT(is carnivorous)	

This Talk

- Negation Inference from Encyclopedic KGs [AKBC20, JWS21]
- ✓ Negation Inference from Commonsense KGs [CIKM22]
- Use cases
 - Knowledge Exploration [VLDB21]
 - Demographic Analyses [ICWSM23]
- Can LLMs solve this problem?
- o Take Away

Use Case: Knowledge Exploration

Deploying peer-based negation inference: Salient negatives about 500K encyclopedic (Wikidata) entities from 11 classes.

d5demos.mpi-inf.mpg.de/negation

Similarity function (e.g., entity embeddings), type of negation (e.g, conditional) Feedback feature

[A, Razniewski, Weikum, Pan VLDB21]

Use Case: Analyzing Communities of Interest

Asia	0.93 0 <mark>.0</mark> 7				
Oceania	0.90 0.10				
Africa	0.89 0.110				
Europe	0.88 0.120				
North America	0.87 0.130				
South America	0.84 0.160				
0	0.2 0.4 0.6 0.8 1				
□ Male					

Study cultural differences in governing: Professions of political leaders Identifying underrepresented groups:

Women as public office holders

Area	Top professions
Central Africa	diplomat (0.27), economist (0.04), civil s
Eastern Africa	diplomat (0.09), judge (0.03), lawyer (0.0
Northern Africa	diplomat (0.12), ruler (0.12), lawyer (0.0
Southern Africa	judge (0.28), lawyer (0.11), civil servant
Western Africa	diplomat (0.17), lawyer (0.03), military j
Central America	lawyer (0.07), diplomat (0.07), writer (0.
North America	lawyer (0.25), diplomat (0.06), judge (0.0
South America	lawyer (0.17), diplomat (0.05), military j
East Asia	monarch (0.09), diplomat (0.07), lawyer
South Asia	diplomat (0.05), lawyer (0.03), economis
Southeast Asia	sovereign (0.09), judge (0.08), lawyer (0
West Asia	diplomat (0.12), sovereign (0.08), milita
Eastern Europe	diplomat (0.12), economist (0.04), lawye
Northern Europe	judge (0.08), diplomat (0.04), monarch (
Southern Europe	diplomat (0.07), lawyer (0.04), military j
Western Europe	lawyer (0.13), judge (0.06), diplomat (0.0

Browser: wikiknowledge.onrender.com/demographics

[A, Razniewski, Pan ICWSM23]

Datasets: doi.org/10.5281/zenodo.7410436

This Talk

- Negation Inference from Encyclopedic KGs [AKBC20, JWS21]
- ✓ Negation Inference from Commonsense KGs [CIKM22]
- ✓ Use cases
 ✓ Knowledge Exploration [VLDB21]
 ✓ Demographic Analyses [ICWSM23]
- $\circ~$ Can LLMs solve this problem?
- o Take Away

LLMs for Generating Salient Negations? (anecdotal)

Question: We ask Bing's Chatbot about Wilhelm Busch's children?

Correct answer: NO.

LLMs for Generating Salient Negations? (anecdotal) - continued

Major challenge: prompt engineering.

1. Stephen Hawking was not a physicist.

\$

S

- 2. Stephen Hawking did not contribute to our understanding of black holes.
- 3. Stephen Hawking did not write "A Brief History of Time."
- 4. Stephen Hawking was not a member of the Royal Society.

Negated statements about Hawking -> wrong answers

Negative statements about Hawking -> misunderstood prompt

\$ I apologize, but as an Al language model, it is not appropriate for me to provide negative statements about individuals, especially someone who was widely respected and accomplished like Stephen Hawking. It is important to maintain a respectful and ethical approach when discussing individuals and their achievements. I would be happy to provide information on Stephen Hawking's life and work, or answer any other questions you may have.

Certainly, here are some more negated statements about Stephen Hawking:

- 1. Stephen Hawking was not just a theoretical physicist, but also a cosmologist and author.
- Hawking did not receive his PhD in physics, but in cosmology from the University of Cambridge.
- 3. Contrary to popular belief, Hawking did not win a Nobel Prize in Physics, although he received numerous other awards and honors throughout his career.

Guided prompt -> relatively better answers (mixed with implicit positives)

LLMs for Generating Salient Negations? (anecdotal)

Recap: Peer-based method outperformed GPT-3 in commonsense negatives.

Question: Can ChatGPT do better than GPT-3 on commonsense concepts?

Salient negations about elephant.

GPT-3	ChatGPT
is not a type of animal	do not have any natural predators in the wild.
does not have a tail.	are not able to jump.
is not found in the dictionary.	do not have sweat glands.

LLMs for Generating Salient Negations? (anecdotal) - continued

Question: Can ChatGPT do better than the peer-based inference method?

Peer-based ChatGPT Top-10 negations .. list of 10 correct and salient negated statements about J. K. Rowling.

Entity	Cor	rect	Salient		Sample
J. K.	0.8	1 0	0.9	0	NOT(citizenship, U.S.)
Rowling	0.0	<u> </u>	0.0	Ŭ	is not above criticism
gorilla	0.5	<u>0.9</u>	0007		NOT(IsA, nocturnal)
			0.9	<u>0.9</u> 0.7	not solitary animals
China	China 0.9 0.2 0.8 0.7	0.0	0 0 0 7	NOT(border with, Thailand)	
China		<u>U.0</u>	0.7	not without innovation	

LLMs for Generating Salient Negations? (anecdotal) - continued

Ability to handle long tail entities.

Question: We ask ChatGPT to list negated statements about the former Lebanese Basketball player.

This Talk

- Negation Inference from Encyclopedic KGs [AKBC20, JWS21]
- ✓ Negation Inference from Commonsense KGs [CIKM22]
- ✓ Use cases
 ✓ Knowledge Exploration [VLDB21]
 ✓ Demographic Analyses [ICWSM23]
- Can LLMs solve this problem?
- o Take Away

Take Away

- KGs lack meaningful negative knowledge
- Explicit negatives boost their usability
- Inference-based methods produce correct and salient negatives
 Thank you.

Open issues & opportunities:

- Subject coverage long tail entities
- Maintenance truly negative up until 2022: NOT(Zelensky, award, Time's Person of the Year)
- **o** LLMs for negation generation
 - Prompt engineering + scrutinize answers
 - Identify negatives with positive meaning Hawking wasn't only a theoretical physicist, but also..
- New interest: cultural commonsense KGs & text
 No-nos: *Tipping in Japan*, *Chewing gum in Singapore*

Resources: <u>mpi-inf.mpg.de/negation-in-kbs</u> W

Webpage: hibaarnaout.com

Questions?